Retour

Don’t Build AI Products The Way Everyone Else Is Doing It

Article original

If you want to build AI products that are unique, valuable, and fast, don't do what everybody else is doing. I'll show you what to do instead.

What not to do

The vast majority of AI products being built right now are just wrappers over other models, such as those that essentially involve calling ChatGPT over an API.

While that's incredibly easy — you send natural language in and get natural language out — and it can do some really cool things, there are some major problems with this approach that people are running into.

But, there's a solution for them that I'll show you.

Issue #1: lack of differentiation

The first major issue is this is not differentiated technology.

If you've noticed that one person creates a chat with a PDF app, and then another dozen people do too, and then OpenAI builds that into ChatGPT directly, it's because nobody there actually built something differentiated.

They use a simple technique, with a pre-trained model, which anyone can copy in a very short period of time.

When building a product whose unique value proposition is some type of advanced AI technology, it's a very risky position to be so easy to copy.

Now, of course, there's a whole spectrum here.

If you're on the right side of the spectrum, where all you made was a button that sends something to ChatGPT and gets a response back that you showed your end users — where ChatGPT basically did all the work —you're at the highest risk here.

On the other end, if you actually built some substantial technology and LLMs where OpenAI has only assisted with a small but crucial piece, then you may be in a better position, but you're still going to run into two other major issues.

Issue #2: LLMs are very expensive

The first major issue you'll run into is cost. The best part of a large language model is their broad versatility, but they achieve this by being exceptionally large and complex, which makes them incredibly costly to run.

As an example, per the Wall Street Journal, recently GitHub Copilot was losing money per user, charging $10, but on average cost $20, and some users cost GitHub up to $80 per month.

And the worst part is you probably don't need such a large model. Your use case probably doesn't need a model trained on the entirety of the Internet because 99.9% of that training covers topics that have nothing to do with your use case.

So, while the ease of this approach might be tempting, you could run into this common issue where what your users want to pay is less than what it costs to run your service on top of large language models.

Issue #3: LLMs are painfully slow

Even if you're the rare case where the cost economics might work out okay for you, you're still going to hit one more major issue: LLMs are painfully slow.

Now, this isn't a huge problem for all applications. For use cases such as ChatGPT, where reading one word at a time is the norm, this might be okay.

However, in applications where text isn't meant to be read word-for-word, and the entire response is expected before proceeding to the next step in the workflow, this can pose a significant issue.

As an example, when we started working on Builder's Visual Copilot, where we wanted one button click to turn any design into high-quality code, one of the approaches we explored was using an LLM for the conversion.

One of the key issues we encountered was the significant time delay. When passing an entire design specification into an LLM and receiving a new representation token by token, generating a response would take several minutes, making it impractical.

And because the representation returned by the LLM is not what a human would perceive, the loading state was just a spinner — not ideal.

Issue #4: LLMs cannot be customized

If for some reason, performance still isn't an issue for you, and your users don't care about having a slow and expensive product that's easy for your competitors to copy, you're still likely to run into another major issue — LLMs can't be customized that much.

Yes, they all support fine-tuning, and fine-tuning can incrementally help the model get closer to what you need. But in our case, we tried using fine-tuning to provide Figma designs and get code out the other side.

But no matter how many examples we gave the model, it didn't improve. We were left with something slow, expensive, and inferior quality. And that's when we realized we had to take a different approach.

The solution: create your own toolchain

What did we have to do instead? We had to create our own toolchain.

In this case, we combined a fine-tuned LLM, a custom compiler that we wrote, and a custom-trained model.

And it wasn't as hard as it might seem.These days, you don't have to be a data scientist or a Ph.D. in machine learning to train your own model.

Any moderately experienced developer can do it. This way, you can build something that is way faster, way more reliable, far cheaper, and far more differentiated. You won't have to worry about copycat products or open-source clones spawning overnight, either.

And this isn't just a theory. Most, if not all, advanced AI products are built like this.

A common misconception about AI products

A lot of people have a major misconception about how AI products are built. I've noticed that they often think that all the core tech is handled by one super smart model, trained with tons of inputs to give exactly the right output.

Take self-driving cars, for example. A lot of people have the impression that there's a giant model that takes in all these different inputs like cameras, sensors, GPS, and so on, and that it crunches it through the AI, and then out comes the action on the other side, such as a right turn.

But this could not be farther from the truth.That car driving itself is not one big AI brain.

Instead of a whole toolchain of specialized models, all connected with normal code — such as models for computer vision to find and identify objects, predictive decision-making, anticipating the actions of others, or natural language processing for understanding voice commands — all of these specialized models are combined with tons of just normal code and logic that creates the end result — a car that can drive itself.

Now, keep in mind, autonomous vehicles is a highly complex example that includes many more models than I've mentioned here.

For building your own product, you won't need something nearly this complex, especially when starting out.

Remember, self-driving cars didn't spawn overnight. My 2018 Prius is capable of parking itself, stopping automatically when too close to an object, and many other things using little to no AI.

Pixel Perfect

Développement frontend, entreprenariat.
Le lundi matin dans ta boîte mail.